Alfred Tarski (1901-1983)

Alfred TarskiAlfred Tarski was born Alfred Tajtelbaum to Jewish parents on January 14, 1901 in Warsaw, Poland, then a part of the Russian Empire. He changed his last name to Tarski in 1923 and converted to Roman Catholicism.

Tarski was a logician, mathematician and philosopher. He earned his doctoral degree at the University of Warsaw in 1924 where he consequently held minor teaching positions as well as teaching mathematics in high school.

During 1924 to 1939 he published prolifically on logic and set theory making a name for himself internationally. He emigrated to the United States in 1939 where he taught and conducted research at the University of California, Berkeley until his death in 1983.

Tarski is widely considered one of the greatest logicians of the twentieth century. His work is fundamental to modern philosophy of language and philosophical logic. He is especially known for his mathematical characterizations of the concepts of truth and logical consequence for sentences of classical formalized languages and to a lesser degree for his mathematical characterization of the concept of a logical constant for expressions of those same languages.

Philosophy has long struggled to find an adequate description for the concept of truth. What exactly does it mean for a sentence to be true?

Since Aristotle, we have always thought a sentence to be true when it corresponds with the facts; however, trying to explain the notion of 'corresponding to' without referring to the concept of truth in the definition has been proven to be extremely difficult.

Tarski proceeded to solve the problem for formal languages. He defended a correspondence theory of truth in The Concept of Truth in Formalized Languages (1933) and The Semantic Conception of Truth and the Foundations of Semantics (1944). According to Tarski, any proposed definition of truth must entail as a consequence all equivalences of the following form:

(a) A sentence S is true in some language L, if and only if p; where p represents a translation of S in a second-order or meta language.

For this condition which Tarski calls 'Convention T', an example would be:

(b) "Schnee ist weiss" is true in German, if and only if snow is white.

It is equally true in English: (c) "Snow is white"; if and only if snow is white.

For Tarski, what is important for any proposed definition of truth is the distinction between an 'object language' and a 'meta-language.'

The complete sentences in (a), (b) and (c) are all sentences enclosed in a meta-language, in other words, used to mention and assert something of another sentence. In the case of (c) clearly the meta-language and object language are both English.

Natural languages such as English and German are their own meta-languages which allows them to both use and mention their own sentences. Tarski calls these types of languages ‘semantically closed’.

Formal languages such as those found in logic and mathematics may be ‘semantically open’ because no sentence which mentions another sentence in the same language counts as a well formed formula.

For Tarski, the difference between a 'semantically open' and 'semantically closed' language is imperative. First, because only semantically open languages can have a definition of truth; and second, because when in natural languages the object language and the meta-language are identical, paradoxes such as the liar paradox can be generate which are undecidable. For example:

(d) This sentence is false.

The above sentence is undecidable because in referring to itself if it is true, it is false and if it is false, then it is true. Thus, Tarski states that truth can only be completely defined for ‘open’ languages, that is, languages where truth is ascribed from outside of the language (in a meta-language).

Therefore, according to Tarski, since truth is a property of sentences, as opposed to the world or of states of affairs, then any definition of truth must ascribe that property to a sentence as long as that sentence tells how things stand in the world. 

Tarski's view of the truth is therefore in line with the 'classical' concept of truth as it corresponds to language and the world. However, Tarski's account has brought about much discussion and work in an attempt to solve the problem of defining truth in natural or 'closed' languages.

Ultimately, Alfred Tarski has been recognized as 'the man who defined truth'. His work on the concepts of truth and logical consequence set the stage for modern logic, influencing developments in mathematics, philosophy, linguistics, and computer science. Tarski promoted his view of logic as the foundation of all rational thought.

Philosophy Archives
Philosopher's Corner

sidebar2 footer2